Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

N-tert-Butyl- N^{\prime}-(5,7-dimethyl-1,8-naphthyridin-2-yl)urea

Ulrich Lüning, ${ }^{\text {a }}$ Christine Kühl ${ }^{\mathbf{a}}$ and Michael Bolte ${ }^{\text {b* }}$
${ }^{a}$ Institut für Organische Chemie, Universität Kiel, Olshausenstraße 40, 24098 Kiel, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 25 April 2001
Accepted 25 May 2001

The title compound, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$, has been synthesized as an $A A D D$ recognition unit for quadruple hydrogen bonds. All non-H atoms of the molecule apart from two methyl groups of the tert-butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=$ C interactions with an $\mathrm{N} \cdots \mathrm{O}$ distance of 2.824 (2) \AA.

Comment

Multiple hydrogen bonds are attracting increasing attention for the formation of host-guest complexes and for supramolecular self-assembly (Zimmerman \& Corbin, 2000). Therefore, quadruple hydrogen-bonding patterns based on four parallel and antiparallel hydrogen bonds have been investigated. While a non-self-complementary pattern like $D A A D \cdot A D D A \quad(D$ is hydrogen-bond donor and A is hydrogen-bond acceptor; Lüning \& Kühl, 1998) can be used for molecular recognition, the two conceivable self-complementary patterns of a four hydrogen-bond system, $A A D D$ or $A D A D$, may form dimers. This has been exploited by Sijbesma et al. (1997) and Beijer et al. (1998) to construct new types of polymers. We present here a naphthyridyl urea, (I), designed for self-complexation. It was synthesized from 7-amino-2,4-dimethyl-1,8-naphthyridine (Gorecki \& Hawes, 1977) by addition to tert-butyl isocyanate in 87% yield.

Meijer's $A A D D$ systems (Sijbesma et al., 1997; Beijer et al., 1998) possess a linear orientation of the hydrogen bonds, leading to dimers held together by four parallel and antiparallel hydrogen bonds. Such a linear dimer of (I) could only be formed if the urea exists in a Z, Z conformation. However, the naphthyridyl urea (I) first forms an intramolecular hydrogen bond between the H atom of the tert-butylamino NH group and atom N 1 of the naphthyridyl ring, which leads to a Z, E conformer. This was proven by X-ray analysis (see Fig. 1). Bond lengths and angles of (I) are in the usual
ranges. The molecule is essentially planar, except for two methyl groups of the tert-butyl group (r.m.s. deviation $0.05 \AA$).

The twist from a Z to an E amide bond presents a hydrogenbond donor D and a hydrogen-bond acceptor A on the surface of (I). Thus, self-recognition ($A D \cdot D A$) forms a dimer which also contains four hydrogen bonds. However, two of these are

intramolecular and only two are intermolecular. The dimerization of ureas which are substituted by N -heterocycles in an $A D \cdot D A$ fashion has already been observed for pyridyl ureas (Bolte et al., 2001; Corbin \& Zimmerman, 2000). The driving force for dimer formation by only two hydrogen bonds accompanied by two intramolecular hydrogen bonds is possibly steric consideration: the 7-methyl group and the tertbutyl group are in closer contact in the strictly intermolecular dimer than in the E, Z form. The new N-substituted naphthyridine (I) is also an interesting ligand for the complexation of two metal atoms in close proximity. Mintert \& Sheldrick (1996) have reported complexes of related 2-amino- or 2-oxosubstituted naphthyridines containing Mo-Mo moieties.

Figure 1
A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. Hydrogen bonds are drawn as dotted lines. The second molecule is generated by applying the symmetry operator $(2-x, 1-y, 1-z)$.

Experimental

Under nitrogen, 7-amino-2,4-dimethyl-1,8-naphthyridine (Gorecki \& Hawes, 1977) ($866 \mathrm{mg}, 5.01 \mathrm{mmol}$) was dissolved in dry toluene (50 ml) , and tert-butyl isocyanate ($500 \mathrm{mg}, 5.05 \mathrm{mmol}$) was added; the mixture was heated to reflux for 2 h . After cooling to room temperature, the solid was filtered off, washed with toluene and dried. Recrystallization from ethanol, toluene/ethanol (10:1) and then toluene gave $1.19 \mathrm{~g}(87 \%)$ of a colourless solid; m.p. 513 K . IR (KBr , cm^{-1}): $\tilde{v} 3360,3187,3119,3042(\mathrm{~N}-\mathrm{H}), 2968$ (aliphatic $\left.\mathrm{C}-\mathrm{H}\right), 1682$ $(\mathrm{C}=\mathrm{O}), 1601,1523$ (aromatic), $1566(\mathrm{~N}-\mathrm{H}), 1401$ (tert-butyl, $\mathrm{C}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.54\left[s, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.61(s, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.69\left(s, 3 H, \mathrm{CH}_{3}\right), 7.05(s, 1 \mathrm{H}, \mathrm{ArH}), 7.46(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.18(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 9.59(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 10.08$ (br s, $1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=272(3), 257(16), 200$ (57), 173 (100); MS (CI/isobutane): $m / z(\%)=273$ (100). Analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (272.4): C 66.15, H 7.40, N 20.57%; found C 66.04, H 7.42, N 20.48\%.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=272.35$
Monoclinic, $P 2_{1} / c$
$a=12.7129$ (2) £
$b=11.2067$ (1) \AA
$c=11.6822(2) \AA$
$\beta=109.578(1)^{\circ}$
$V=1568.14(4) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.154 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5891 \\
& \quad \text { reflections } \\
& \theta=1-25^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=140(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.20 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens CCD three-circle diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.970, T_{\text {max }}=0.994$
10199 measured reflections
3174 independent reflections
2135 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.051 \\
& \theta_{\max }=26.4^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=-13 \rightarrow 13 \\
& l=-13 \rightarrow 14 \\
& 512 \text { standard reflections } \\
& \text { frequency: } 900 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.136$
$S=1.02$
3174 reflections
192 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

N1-C11	$1.391(2)$	$\mathrm{C} 11-\mathrm{N} 12$	$1.322(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.400(2)$	$\mathrm{N} 12-\mathrm{C} 13$	$1.374(2)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.249(2)$	$\mathrm{C} 13-\mathrm{N} 14$	$1.367(2)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.337(2)$	$\mathrm{N} 14-\mathrm{C} 15$	$1.336(2)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.483(2)$		
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 2$	$129.94(16)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$125.23(15)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3$	$124.82(16)$	$\mathrm{C} 11-\mathrm{N} 12-\mathrm{C} 13$	$118.95(16)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$118.28(15)$	$\mathrm{C} 15-\mathrm{N} 14-\mathrm{C} 13$	$117.08(18)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$116.90(15)$		
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	$179.46(17)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$178.18(16)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$-0.3(3)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 11-\mathrm{N} 12$	$-0.2(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$-1.6(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.90(2)$	$1.93(2)$	$2.824(2)$	$175.7(19)$ $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 12$

Symmetry code: (i) $2-x, 1-y, 1-z$.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1059). Services for accessing these data are described at the back of the journal.

References

Beijer, F. H., Kooijman, H., Spek, A. L., Sijbesma, R. P. \& Meijer, E. W. (1998). Angew. Chem. Int. Ed. Engl. 37, 75-78.
Bolte, M., Kühl, C. \& Lüning, U. (2001). Acta Cryst. E57, o502-o504.
Corbin, P. S. \& Zimmerman, S. C. (2000). J. Am. Chem. Soc. 122, 3779-3780.
Gorecki, D. K. J. \& Hawes, E. M. (1977). J. Med. Chem. 20, 838-841.
Lüning, U. \& Kühl, C. (1998). Tetrahedron Lett. pp. 5735-5738.
Mintert, M. \& Sheldrick, W. S. (1996). Chem. Ber. 129, 683-689.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sijbesma, R. P., Beijer, F. H., Brunsveld, L., Folmer, B. J. B., Hirschberg, J. H. K. K., Lange, R. F. M., Lowe, J. K. L. \& Meijer, E. W. (1997). Science, 278, 1601-1604.
Zimmerman, S. C. \& Corbin, P. S. (2000). Struct. Bonding (Berlin), 96, 63-94.

